Page: 1 of 4
DATE: March 13, 2008

NAME: $\qquad$

STUDENT \# : $\qquad$

There are 5 questions of total mark 50.
[12] 1. Evaluate each of the following limit or explain why it does not exist.
(a) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3}+x y^{2}-2 x^{2} y}{x^{2} y+9 x y^{2}}$
(b) $\lim _{(x, y) \rightarrow(2,2)} \frac{2 x^{2}+2 x y+2 x-x y^{2}-y^{3}-y^{2}}{2 x^{3}-2 x^{2} y+2 x-x^{2} y^{2}+x y^{3}-y^{2}}$

Page: 2 of 4
DATE: March 13, 2008
TIME: 70 minutes
COURSE: MATH 2130
[6] 2. Given that $z=f(u, v, x), u=g(x, y)$ and $v=h(x)$; find a formula for $\frac{\partial z}{\partial x}$.
[10] 3. Let $u=e^{s+t}+\cos t$, find $\frac{d u}{d x}$ if

$$
x^{3} t+t x^{2}-4=0 \quad \text { and } \quad e^{s}-s^{3} x^{2}+1=0 .
$$

Page: 3 of 4
DATE: March 13, 2008
TIME: 70 minutes
COURSE: MATH 2130
EXAMINER: G.I. Moghaddam
[10] 4. Find the directional derivative of the function

$$
f(x, y, z)=\frac{1}{3} x^{3}+y^{2}-z^{2}
$$

at the point $(-1,1,3)$ along the line of intersection of the two planes $2 x+y+1=0$ and $x+y-z=-3$ in the direction of increasing $x$.

Page: 4 of 4
DATE: March 13, 2008
TIME: 70 minutes
COURSE: MATH 2130
[12] 5. Find all critical points for the function

$$
f(x, y)=e^{y^{2}-x y^{2}+\frac{1}{2} x^{2}} .
$$

Choose only one critical point and determine if it is a relative maximum, a relative minimum, or a saddle point. Show your work.

